Student's z, t, and s : What if Gosset had R ?

James A. Hanley ${ }^{1} \quad$ Marilyse Julien ${ }^{2} \quad$ Erica E. M. Moodie ${ }^{1}$

${ }^{1}$ Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, 1020 Pine Ave W., Montreal, Quebec, H3A 1A2, CANADA
${ }^{2}$ Department of Mathematics and Statistics, McGill University, 805 Sherbrooke St. W., Montreal, Quebec, H3A 2K6, CANADA

Additional Figures, referred to in the American Statistician article

Figure 1: TOP: Distributions of s / σ [left] and z [right] in samples of size $n=4$ from Macdonell's data on heights of 3000 criminals. Dotted line: (re-scaled) distribution of sample statistics obtained from one set of 750 random samples generated by Gosset's procedure. Inset: distribution of 100 chi-square statistics ($18 s / \sigma, 15 z$ intervals). Thin solid line: distribution of statistics obtained from 75,000 samples of size 4 sampled with replacement from 3000 heights recorded to the nearest $1 / 8^{\prime \prime}$. BOTTOM: Corresponding results for left finger lengths, by Gosset's procedure, or - in case of the 75,000 - recorded to nearest 1 mm .

Figure 2: Distribution of s / σ in 75,000 samples of size $n=4$ sampled with replacement from heights of 3000 criminals, recorded to nearest 1" (thinner line) versus theoretical distribution (thicker line).

